平成30年間の31冊  個人的セレクト 数学書(数理科学関係 編) 洋書(英語版)

(1)から(17)までは、「一読」済み(日本語で読んだものもある。残りは、「令和」で読みたい。)


(1)志村五郎 著『Introduction to the theory of automorophic functions』
(2)三宅 敏恒 著, Modular forms
(3)Andre Weil 著 Basic Number Theory (Classics in Mathematics)
(4)J. H. Silverman, J. Tate 著「Introduction to Elliptic Curve Theory」
(5)J. H. Silverman 著 The Arithmetic of Elliptic Curves (Graduate Texts in Mathematics)
(6)Kenneth Ireland, Michael Rosen 著,A Classical Introduction to Modern Number Theory (Graduate Texts in Mathematics) 
(7)岩澤 健吉 (著) Algebraic Functions (Translations of Mathematical Monographs)
(8)肥田晴三 著『Elementary theory of L-functions and Eisenstein series』
(9)Erich Hecke  (著)Lectures on Dirichlet-Series, Modular Functions and Quadratic Forms
(10)Eberhard Freitag (著) Hilbert Modular Forms
(11)Paul B. Garrett  (著) Holomorphic Hilbert Modular Forms (Wadsworth & Brooks/Cole Mathematics Series) 
(12)Serge Lang  (著) Introduction to Modular Forms (Grundlehren der mathematischen Wissenschaften) 
(13)Juergen Neukirch (著), Norbert Schappacher (翻訳) Algebraic Number Theory (Grundlehren der mathematischen Wissenschaften) 
(14)ボレビッチ (著), シャファレビッチ (著) Number Theory
(15)R. Hartshorne 著, Algebraic Geometry(Graduate Texts in Mathematics. 52), Springer (1977)
(16)Qing Liu  (著) Algebraic Geometry and Arithmetic Curves (Oxford Graduate Texts in Mathematics) 
(17)J. Greenberg (翻訳), Jean-Pierre Serre  (著) Local Fields (Graduate Texts in Mathematics) 


Silverman, J.H.:  Advanced topics in the arithmetic of elliptic curves, Springer Verlag, 1994 
Fred Diamond  (著), JERRY MICHAEL SHURMAN (著) A First Course in Modular Forms (Graduate Texts in Mathematics) 2016
H. Matsumura (著) Commutative Ring Theory (Cambridge Studies in Advanced Mathematics) 2009 
Takeshi Saito (著), Masato Kuwata (翻訳) Fermat's Last Theorem: The Proof (Translations of Mathematical Monographs) 2015. 
 

志村五郎 (著)   Automorphic Functions and Number Theory. Lecture Notes in Mathematics. 54 (Paperback ed.). Springer. (1968).
志村五郎 (著)  Euler Products and Eisenstein Series. CBMS Regional Conference Series in Mathematics (Paperback ed.). American Mathematical Society. (1997-07-01). 
志村五郎 (著)  Abelian Varieties with Complex Multiplication and Modular Functions (Hardcover ed.). Princeton University Press. (1997-12-08).
志村五郎 (著)  Arithmeticity in the Theory of Automorphic Forms. Mathematical Surveys and Monographs (Paperback ed.). American Mathematical Society. (2000-08-22). 
志村五郎 (著)  Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups. Mathematical Surveys and Monographs (Hardcover ed.). American Mathematical Society. (2004-03-01). 
志村五郎(著) Modular Forms: Basics and Beyond (Springer Monographs in Mathematics) 2011年


肥田晴三 (著)modular forms and galois cohomology 2000年
肥田晴三 (著)geometric modular forms and elliptic curves 2000年
肥田晴三 (著)p-adic automorphic forms on shimura varieties 2004年
肥田晴三 (著)Hilbert modular forms and iwasawa theory 2006年
肥田晴三 (著)elliptic curves and arithmetic invariants  2013年

志村五郎 (著) 論文集 Collected Papers. I: 1954-1965 (Hardcover ed.). Springer. (2002). 
志村五郎 (著) 論文集 Collected Papers. II: 1967-1977 (Hardcover ed.). Springer. (2002). 
志村五郎 (著) 論文集 Collected Papers. III: 1978-1988 (Hardcover ed.). Springer. (2003). 
志村五郎 (著) 論文集 Collected Papers. IV: 1989-2001 (Hardcover ed.). Springer. (2003). 
////

通常代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。

初等整数論
他の分野の数学的手法を使わずに問題に取り組む、数論の中で最も基礎的な土台をなす。フェルマーの小定理やオイラーの定理、平方剰余の相互法則などはこの分野の成果である。

代数的整数論
扱われる対象は整数というよりも代数的整数である。従って、代数的な整数論と読むよりも代数的整数の論と読む方が正しいと考えられる。ガウスの整数を研究したカール・フリードリヒ・ガウスがおそらくこの分野の創始者である。体論はこの分野の基礎的根幹であって、ガロア理論は(他の数学においてもそうだが)基本的な道具である。代数体のアーベル拡大の統制を記述する類体論も、この分野の大きな成果である。元来の岩澤理論もここに分類されよう。

解析的整数論
微積分や複素関数論等の解析学的手法を用いて問題に取り組む。この分野は初めて解析的な手法を系統的に数論に応用したディリクレに始まるとされる。その弟子であるベルンハルト・リーマンによってすでにこの分野の(ひいては数論)の最大の未解決問題であるリーマン予想(1859年)が提示されたのは興味深い。素数定理の証明(1896年)はこの分野の一里塚である。ゼータ関数、保型関数を研究するのもこの分野であって、超越数論とも関係が深い。

数論幾何学
整数論の問題を、代数幾何の手法で研究する、あるいは代数幾何の主対象である代数多様体(もっと広くスキーム)の整数論的な性質を研究する分野である。ディオファンタスによる研究(初等整数論の範疇)から考えても、その起源は古いが、現代的な意味での数論幾何学の始祖はアンドレ・ヴェイユ(合同ゼータ関数に関する研究、モーデル・ヴェイユの定理の証明のほか、任意の体上での代数幾何学の研究など)といえるだろう。1950年代後半以降のアレクサンドル・グロタンディークらによるスキーム論およびそれに関連する各種理論の発展により、爆発的な発展を遂げ、現在では数論の中核に位置しているといえる。
フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。
ガウスは次のような言葉を残している。

「数学は科学の王女であり、数論は数学の王女である」
永らく実用性は無いと言われてきたが、近年暗号(RSA,楕円曲線暗号)や符号により計算機上での応用が発達しつつある。

//////
個人的研究テーマ メモ


Hilbert modular forms (志村多様体)

Siegel modular forms (志村多様体)


岩澤理論(類体論と非可換類体論)


保型形式と表現論の整数論


肥田理論(P進 modular formなど)


代数幾何学と数論幾何学と微分幾何学(志村多様体)


金融数学(金融工学)(確率微分方程式やブラウン運動など)


情報数学(楕円曲線・楕円関数や暗号理論など)


量子情報理論( 暗号と量子コンピュータ 耐量子計算機暗号  量子論のための表現論など)
/////

参考
2013 1010頃
数学者が読んでいる本ってどんな本 小谷元子(編集) 東京書籍 森重文 (著), 上野健爾 (著), 足立恒雄 (著),砂田利一 (著), 黒川信重 (著),小谷元子 (著, 編集), 益川敏英 (著), 野崎昭弘 (著), & 5 その他 など

/////

平成30年の読むべき30冊? 書籍

参考

(個人的に、「平成30年間」に影響を受けた書籍(一部分))
<平成30年の読むべき30冊?「書籍・思索の旅(好書好日)」>平成の30冊、1位に1Q84「平成は村上春樹の時代」

平成30年の「120冊」  個人的セレクト 数学書(数理科学関係 編)


平成30年間の31冊  個人的セレクト 数学書(数理科学関係 編) 洋書(英語版)



平成はどんな時代だったか?「誰もが迷った30年」 確かに、戦争はなかった? しかし、経済戦争には、負けた!(世界企業ランキング: 平成元年 (日本企業は32社) と平成30年 (日本企業は1社))


完全理解 「フェルマーの最終定理」の研究  (数学・数理科学分野) (「フェルマーの最終定理の証明」の理解へ)
1987年04月03日 大学の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など)1980年代(後半)頃の教科書

1988年04月03日 大学の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など) 1980年代(後半)頃の教科書


1989年04月03日 大学の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など) 1980年代頃(後半)の教科書


1990年4月3日 大学(大学院へ)の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など) 1990年代(前半)頃の教科書?


1991年4月3日 大学(大学院へ)の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など) 1990年代(前半)頃の教科書?


1992年4月3日 大学(大学院へ)の数学科(数理科学科)で学ぶこと (大学生の頃 数学専門の教科書など) 1990年代(前半)頃の教科書?


//////

自主ゼミ用推薦図書は 「教科の手引き」


http://www2.sci.kyoto-u.ac.jp/lib/syllabus/syllabus02.htm 

数理科学系

書名/著者名
◇教員による(?)コメント 出版社,出版年 備考
数論入門 (現代数学への入門) / 山本芳彦著 岩波書店 , 2003.11 現代数学への入門, 2003-2004
電子ブック
◇整数や素数の基本的な性質からはじめて,合同式,平方剰余の相互法則,2次体の整数論が解説されている。また後半では高度な話題も扱われている。具体例が豊富に載っているので,抽象的な議論に慣れていなくても,手を動かして読み進めることができる。代数学の入門書としても適している。
//
体とガロア理論(大学数学の入門;3 代数学 ; 3) / 桂利行著 東京大学出版会 , 2005.9
◇ガロア理論の手軽な入門書。体の理論,拡大体の理論,ガロアの基本定理が扱われた後,応用として代数方程式の可解性や定規とコンパスによる作図可能性が解説されている。大部ではないので,気楽に読み通すことができる。
//
Fermatの夢と類体論 (数論 ; 1) / 加藤和也,齋藤毅,黒川信重著 岩波書店 , 2005.1
◇類体論の教科書。『どのような素数が二つの平方数の和で表されるか』といった素朴な問題からはじめて,楕円曲線,p進数,ゼータ関数,アデール・イデールといった概念が導入され,類体論が解説される。続編として,岩澤理論や保型形式論などの高度な話題を扱った「数論Ⅱ」もある。

岩澤理論や保型形式論 (数論 ; 2) / 加藤和也,齋藤毅,黒川信重著 岩波書店
//
代数曲線論(講座数学の考え方;18) / 小木曽啓示著 朝倉書店
◇複素数体上の代数曲線(コンパクトリーマン面)の教科書。リーマン球面の定義から始めて,層や層係数コホモロジーの理論が展開され,セールの双対定理やリーマン-ロッホの定理とその応用が扱われる。代数曲線論をきちんと学んでおくと,より高度な代数幾何学を勉強するための足がかりにもなる。
//
楕円曲線論入門 / J.Hシルヴァーマン,J.テイト著 ;足立恒雄 [ほか] 訳 シュプリンガー・フェアラーク東京
◇整数論的な楕円曲線論の教科書。有理数体上の楕円曲線の有理点が有限生成アーベル群をなすというモーデルの定理をはじめとした様々な定理が紹介・証明されている。また最後の章では虚数乗法論が解説されている。
//
曲線と曲面の微分幾何 (改訂版) / 小林昭七著 裳華房 , 1995.9
◇曲面上の微分幾何学について,ガウスボンネの定理までを丁寧に解説してあり,具体例の計算も豊富に載っている。
//
Using the Borsuk-Ulam theorem : lectures on topological methods in combinatorics and geometry (Universitext). / Jiří Matoušek ; written in cooperation with Anders Björner and Günter M. Ziegler  - 2nd, corr. printing Springer, 2008 電子ブック
◇Borsuk-Ulam の定理というトポロジーにおける初等的な定理の様々な変種や、グラフの彩色数などを含む組み合わせ論の問題への応用を解説する。英語は平易で、直感的にわかりやすい。予備知識は線形代数の初歩だけで、位相空間の知識は必要ない。トポロジーの入門書でもあり、組み合わせ論の解説書でもある。
//
双曲幾何 (現代数学への入門). / 深谷賢治  岩波書店 , 2004.9  電子ブック 
◇線形代数と微積分だけで読める双曲幾何の入門書。双曲幾何とは非ユークリッド幾何の一つで、現代数学で重要な役割を演じている。 
// 
トポロジー入門 (共立講座21世紀の数学 ; 7)/ 小島定吉  共立出版 , 1998.7    
◇曲面を中心にして大学で習うトポロジーについて説明した本。基本群、被覆空間、複体のホモロジーを含む。初歩の群論を使うが、読みながら勉強してもよい。 
// 
トポロジー (岩波全書 ; 276)./ 田村一郎  岩波書店 , 1972.4    
◇単体複体のホモロジーが非常に丁寧に解説されており、ホモロジーのアイディアや初歩的な扱いを学ぶにはうってつけの本。予備知識は線形代数の初歩だけで、位相空間の知識は必要ない。
//
複素解析 / L.V. アールフォルス著 ; 笠原乾吉訳 現代数学社 , 1982.3
◇複素函数論の定評ある入門書。複素数や複素関数から始めて、複素積分、級数展開、等角写像、楕円関数、などの内容が扱われる。複素函関数論には幾何学的な側面と解析的な側面とがあり、両者が良く解説されている。
//
フーリエ解析大全 / T.W. ケルナー著 ; 高橋陽一郎訳 朝倉書店 , 1996.8-2003.3
◇解析学の基礎であるフーリエ解析の理論とその精神を、具体的な応用例を通して解説した本。必要な知識としては、1回生で学習する程度の微分積分学だけでよい。
//
シナイ確率論入門コース / Ya.G. シナイ著 ; 森真訳 丸善出版 , 2012.6
◇確率論の基礎概念や重要な話題について一通り概観することができる良書。つまづきやすい確率論独自の用語や測度論の基礎事項についても、直観的な理解が得られるよう気を配りながら書かれている。本書を通読すれば、測度論や確率論を本格的に学ぶ際に役立つであろう。
//
ルベーグ積分から確率論  (共立講座21世紀の数学 ; 10) / 志賀徳造著 共立出版 , 2000.4
◇確率論に必須のルベーグ積分を解説した後,確率論の基礎から,応用としてランダムウォークを中心とした確率過程を論じている。確率論がコンパクトに概観できる。
//
コンピュータの数学 / ロナルド L. グレアム, ドナルド E. クヌース, オーレン パタシュニク [著] ; 有澤誠 [ほか] 訳 共立出版 , 1993.9 原著1st ed. 2nd ed.
◇原題は Concrete Mathematics.いろいろな分野からの楽しく具体的な計算が沢山盛られている。経験豊富な著者たちによって面白く学べる。大学の抽象的数学にショックを受けた人にも数学がそれだけでないという例があることがわかるだろう。コンピュータとは直接関係ないともいえるので,邦訳の題名にとらわれずに見てみるとよい。オイラーの計算に近づけるかもしれない。
//
オートマトン言語理論計算論 ; 1 (Information & computing ; 3-4)  / J. ホップクロフト, J. ウルマン共著 ; 野崎昭弘 [ほか] 共訳  第2版

サイエンス社 , 1984.8-1986.3 原著1st ed. 2nd ed.
//
◇オートマンと言語理論の解説書として最も有名な1冊。オートマンと正規表現および文脈自由言語の理論について一通りのことを学ぶことができる。例や練習問題もあり、これらを解き進めていくと理解が深まるだろう。
計算論 : 計算可能性とラムダ計算 (コンピュータサイエンス大学講座 ; 24) / 高橋正子著 近代科学社 , 1991.8
◇ラムダ計算について,構文論と意味論の両面から丁寧に解説されている。ラムダ計算に関してある程度専門的な内容まで学ぶことができる。証明等に関しても省略をすること無くきちんと書かれているので,内容を良く吟味しながら読み進めていくのがよいだろう。
//
計算論 : 計算可能性とラムダ計算 (コンピュータサイエンス大学講座 ; 24) / 高橋正子著 近代科学社 , 1991.8
◇ラムダ計算について,構文論と意味論の両面から丁寧に解説されている。ラムダ計算に関してある程度専門的な内容まで学ぶことができる。証明等に関しても省略をすること無くきちんと書かれているので,内容を良く吟味しながら読み進めていくのがよいだろう。
//////
参考

http://www.sci.kyoto-u.ac.jp/ja/_upimg/files/curriculum-guide/2019curriculum-guide.pdf 

////// 


参考 

「令和」に伝えたい数学書籍 選  平成30年間の和書・書籍「120冊」(日本語)と洋書・書籍「31冊」(英語版)
 

////// 

参考
 

数学者が読んでいる本ってどんな本 東京書籍 森重文 (著), 上野健爾 (著), 足立恒雄 (著),砂田利一 (著), 黒川信重 (著),小谷元子 (著, 編集), 益川敏英 (著), 野崎昭弘 (著), & 5 その他 など (2013 10 10)
 

1990年8月21日 「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授
 

参考
 

京都 VSOP も祝! 1990年8月21日 「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授
 

////// 

参考
 

<論文のマップあれば・・・>「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授
////// 

完全理解 「フェルマーの最終定理」の研究  (数学・数理科学分野) (「フェルマーの最終定理の証明」の理解へ)
 

完全理解 「ポアンカレ予想」の研究  (数学・数理科学分野) (「ポアンカレ予想の証明」の理解へ)
////// 

京都賞 受賞記念講演 黒澤 明(思想・芸術部門映画・演劇)、アンドレ・ヴェイユ(基礎科学部門 受賞(数学 整数論・代数幾何学など))国立京都国際会館へ (大学の研究室 教授らとも、京大の友人とも)ame
 

あの頃考えていたこと(学問編)メモvol.2  数学 整数論(志村理論)を知る 「数を読む」Jugem
 あの頃考えていたこと(学問編)メモvol.1  数学 整数論(志村理論)を知る 「数を読む」 se 

数学 整数論「素数の宇宙の世界」 Dream of G. Shimura? (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎 li
 

1993年6月23日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言 fc2
 1994年9月19日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を修正 li 

1995年2月13日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明(完成)se
 

感動!数学の歴史 「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) ame
 

///// 

参考
 

(個人的に、「平成30年間」に影響を受けた書籍(一部分))

<平成30年の読むべき30冊?「書籍・思索の旅(好書好日)」>平成の30冊、1位に1Q84「平成は村上春樹の時代」
 

平成30年の「120冊」  個人的セレクト 数学書(数理科学関係 編)
 

平成30年間の31冊  個人的セレクト 数学書(数理科学関係 編) 洋書(英語版)
 


平成はどんな時代だったか?「誰もが迷った30年」 確かに、戦争はなかった? しかし、経済戦争には、負けた!(世界企業ランキング: 平成元年 (日本企業は32社) と平成30年 (日本企業は1社))
 

////// 

http://www2.sci.kyoto-u.ac.jp/lib/syllabus/syllabus02.htm
 

////// 

物理科学系

書名/著者名
◇教員によるコメント 出版社,出版年 備考

〔解析力学〕
古典力学 上・下 (新版; 物理学叢書 ; 11a,11b) / ゴールドスタイン著 ; 瀬川富士, 矢野忠, 江沢康生訳 吉岡書店, 1983-1984 初版1959 訂正版1960 改訂版1968
量子力学を学ぶための解析力学入門 / 高橋康著 (増補第2版) 講談社, 2000 初版1978
力学 (ランダウ=リフシッツ理論物理学教程) / ランダウ・リフシッツ 東京図書, 1974
解析力学 1 (朝倉物理学大系 / 荒船次郎 [ほか] 編集 ,1-2) / 山本義隆, 中村孔一  朝倉書店, 1998  電子ブック 
〔量子力学〕
量子論の基礎 : その本質のやさしい理解のために / 清水明著(新版) サイエンス社 , 2004.4 初版2003
量子力学1・2 / 猪木慶治・川合光 講談社, 1994
現代の量子力学 上・下 / J.J. Sakurai著 ; San Fu Tuan編 ; 桜井明夫訳 (第2版) 吉岡書店, 2014-2015 初版1989
〔電磁気学〕
理論電磁気学 / 砂川重信 [著] (第3版) 紀伊國屋書店, 1999 初版 1965 
第2版 1973
電子ブック
〔統計熱力学〕
統計物理学 上、下 / ランダウ, リフシッツ [著] ; 小林秋男 [ほか] 訳 (第3版)

◇学部やや上級向き。 岩波書店, 1980-1980 第2版1966-1967
初版1957-1958
大学演習熱学・統計力学 / 久保亮五編 (修訂版)

◇豊富な問題を解きながら議論するゼミに向いている。ゼミとして解答集を新たに作成する意気込みで臨むと有意義になるだろう。  裳華房, 1998.9 初版1961
統計力学 1,2 / 田崎晴明著

◇全体の構成からとりあげる題材まで丁寧に検討されている素晴らしい本。細部までしっかりと熟読することを薦めたい。
この本だけでほぼ閉じているので標準的なスタイルのゼミに向いている。  培風館 , 2008.12

///
場の古典論 : 電気力学,特殊および一般相対性理論 (ランダウ=リフシッツ理論物理学教程) / エリ・デ・ランダウ, イェ・エム・リフシッツ著 ; 恒藤敏彦, 広重徹訳 東京図書, 1978.10 増訂新版1964
第7刷1984  1959(商工出版社) 初版1959

アインシュタイン選集 / アインシュタイン [著]
 1. 特殊相対性理論・量子論・ブラウン運動  (アインシュタイン選集 ; 1)  [アインシュタイン著] ; 中村誠太郎, 谷川安孝, 
   井上健訳編 
 2. 一般相対性理論および統一場理論 (アインシュタイン選集 ; 2)  [アインシュタイン著] ; 内山龍雄訳編 共立出版, 1970
量子力学の数学的基礎 / J.V.ノイマン [著] ; 井上健 [ほか] 共訳 みすず書房, 1957.11
スピンはめぐる : 成熟期の量子力学 / 朝永振一郎 [著] ; 江沢洋注 -- 新版 みすず書房 , 2008

活動する宇宙 : 天体活動現象の物理 / 柴田一成[ほか]共編  (第2版)

◇ダイナミックに活動する天体の姿を、観測・理論・シュミレーションの手法から、わかりやすく解説。 裳華房 , 2006 初版 1999

◇学部初級向け
The physical universe : an introduction to astronomy  (A Series of books in astronomy) / Frank H. Shu University Science Books, c1982 *教科の手引きには
1988とあり。
宇宙科学入門 / 尾崎洋二著 (第2版) 東京大学出版会 , 2010.3 初版1996

◇学部上級向け
 宇宙物理学 : 星銀河宇宙論 / 高原文郎著 (新版) 朝倉書店 ,2015.5 初版 1999
シリーズ現代の天文学   全17巻 -第1版-、-第2版- 日本評論社 , 2007-2018
宇宙物理学(朝倉現代物理学講座 13) / 佐藤文隆, 原哲也著 朝倉書店 , 1983.4  
///
//////
目標
(1)「整数論と数論幾何と表現論」と「微分幾何とトポロジーと代数幾何」 
純粋数学系としての「フェルマー の最終定理」と「ポアンカレ予想」等証明の完全理解とその発展
 
保型形式と保形表現の整数論
楕円曲線と暗号理論
代数幾何と情報理論
リーマン幾何学と相対性理論
ゼータ関数の統一理論
など

(2)「量子情報」と「金融工学」と「宇宙統一理論」と「科学史と社会学」
社会と数学の関わり系としての「量子コンピュータと暗号理論」と「株・金融市場(伊藤公式)とBSモデル」等の理論とその発展

量子力学と情報理論
確率解析とブラックショールズ公式
超ひも理論と統一理論
量子情報理論
など

//////