つれづれなるままの数学(算数)素数GPSの周辺 iPhoneとAndroid 366 aps

数学(算数)・素数にまつわる話題から、やや専門的な「整数論」「数論幾何学」「代数幾何学」のような話題。「フェルマーの最終定理」、「ポアンカレ予想」の解決の「証明」の理解など、夏休みの研究の話題など、小中高から一般までの話題、「ABC予想」、「リーマン予想」の周辺など 「志村多様体」「保形表現」

2017年12月

数学(算数)・素数にまつわる話題から、やや専門的な「整数論」「数論幾何学」「代数幾何学」のような話題。「フェルマーの最終定理」、「ポアンカレ予想」の解決の「証明」の理解など

素数が刻まれているガラス「天才か?」その意味は・・・・!

素数が刻まれているガラス「天才か?」その意味は・・・・!
素数のガラス


完全理解 「フェルマーの最終定理」の研究  (数学・数理科学分野) (「フェルマーの最終定理の証明」の理解へ)

完全理解 「ポアンカレ予想」の研究  (数学・数理科学分野) (「ポアンカレ予想の証明」の理解へ)



間違ってガラスを割っちゃた経験があるという人いますか?学校のガラスを割って先生に怒られるといった話はよくありますね。
今、Twitterでとある学校のガラスが話題になり、現在までに8万RT以上されています。
素数が刻まれているガラス「天才か?」

僕が高1くらいのとき、母校の玄関のガラスに先輩が突っ込んで割った事件があった。そのあと張り直されたガラスには素数がめっちゃ刻印されてて、なんでやろ?って思ったら、同級生が「割れへんようにちゃう」と言って納得。天才か?

なるほど、素数は「割り切れない」からガラスが割れないようにという意味で刻印されているのですね。
なるほど納得です。

文系の苦しむガラス

素数とは1とその数自身以外では割り切れない。逆に言えば、1とその数自身なら割れる。さて……
— type76@意識低すぎて南大西洋に水没 (@type76_)
2017年12月23日
from Twitter
無色透明だとガラスが有ると分からず突っ込むのを防ぐのが主目的でしょうが、洒落てますね
— 批判性思维 (@pipanxingsiwei)
2017年12月23日
from Twitter
あ~素数か。そう言う事か、確かに割れないねw
考えた人すげぇわw https://t.co/2gI4G5Mx5z
— 魔界畜将じゃっぷん (@warshipcaptain)
2017年12月23日
from Twitter
それでも割れたら少数派(小数)

オチまでついてる……!?
— nnyy (@nupngyu)
2017年12月23日
from Twitter
「1とその数なら割れる」といった指摘もありますが…笑
こんなデザインを取り入れた学校も粋ですね。

//////

なるほど、素数は「割り切れない」からガラスが割れないようにという意味で刻印されているのですね。
なるほど納得です。

////// 

フェルマーの最終定理 【著者】サイモン•シン(青木薫 訳) 【発行】新潮社(新潮文庫) / 「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社

//////
文系用読者:「教育者」としてのあの頃の感覚として読む
//////

フェルマーの最終定理 【著者】サイモン•シン(青木薫 訳) 【発行】新潮社(新潮文庫)

整数に関する問題は、問題を理解するのはやさしいが解くのはとてつもな く難しいことが多い。この本の表題ともなっている「フェルマーの最終定理」 の証明もそのような整数問題の1つであり、アマチュア・プロを問わず 300 年もの間、多くの数学者の挑戦を退けてきた問題である。1995 年最終的に 証明を成し遂げた勝者はアンドリュー・ワイルズという数学者であった。し かし、その証明への取り組みは試練に満ちており、7年間の隠密行動、そし て1度は証明できたと発表して、その後証明に穴があることがわかり1年余 りの間、公にさられた状態での穴埋め作業の末ようやく証明完了というドラ マが書かれています。谷山、志村、岩澤、肥田といった日本人数学者もからみ、困難な問題にチャレンジする人間模様を描いた物語として、一読を。

//////
理系用読者:「数学者」としてのあの頃の感覚として読む
//////

【書名】「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社
( フェルマーの大定理が解けた!―オイラーからワイルズの証明まで (ブルーバックス) 足立恒雄著 新書 )
( フェルマーの大定理―整数論の源流 (ちくま学芸文庫) 足立恒雄著 )
( フェルマーの最終定理 文庫 フェルマーの最終定理 (新潮文庫) サイモン シン(著), 青木 薫 (翻訳) )

 
1993年6月23日に、プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言し、その後、証明の不備が見つかり、1年以上に苦考の末、1994年9月19日にその修正に成功したこの期間に、著者が証明の解説として数学セミナー読者向けに書いたものを集めたものである。厳密性はないが、極力丁寧に、正確に伝えようとする、著者の誠実さと、理解の深さが伝わってくる。原論文の 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras にも、整数論にも、非常に惹きつけられる内容だった。購入時にも読んだと思われるが、詳しく覚えていないところをみると、理解しようとはしていなかったのかもしれない。むろん、今回も十分な時間をかけて読んだとは言えないが。

以下は備忘録

「砂田利一『基本群とラプラシアン、幾何学における数論的方法』」(p.37)「ワイルス『ぼくは、フライとリベットの結果を知ったとき、風景が変化したことに気がついた。(中略)この時まで、フェルマの最終定理は、何千年間もそのまま決して解かれることがなく数学がほとんど注目することがない数論の他の[散発的かつ趣味的な]ある種の問題と同じようなものに見えていた。フライとリベットの結果によって、フェルマの最終定理は、数学が無視することのできない重要な問題の結果という形に変貌したのだ。(中略)ぼくにとって、そのことは、この問題がやがて解かれるであろうと言うことを意味していた』」(p.67)「清水英夫著『保型関数I, II, III』、志村五郎著『Introduction to the theory of automorophic functions』、Knapp『Elliptic curves』、河田敬義著『数論I, II, III』、藤崎源二郎・森田康夫・山本芳彦著『数論への出発』、上野健爾著『代数幾何学入門』、J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』、土井公二/三宅敏恒著『保型形式と整数論』、肥田晴三著『Elementary theory of L-functions and Eisenstein series』、吉田敬之著『保型形式論: ─現代整数論講義ー』、N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』」(p.123,4)「田口雄一郎さんの手紙に『Deligne さんの家はこの道の始まりのところ、森の入り口にあります。Deligne さんといへども、森羅万象の真理の最奥に至る道のほんの入口のところにゐるに過ぎないといふ、これは自然による卓抜な比喩であると思われます。ところが、恐ろしいことに彼の子供たちは毎日この道を通って森のむかうの学校に通ってゐるらしいのです。』とありました。フェルマーからの350年は大進歩でしたが、人類が続いてゆけば、それは今後何千年の数学の序曲であり、何段も何段も自然の深奥への新しい段階があることでしょう。」(p.239)「ガウス『どのように美しい天文学上の発見も、高等整数論が与える喜びには及ばない』ヒルベルト『数論には古くからの問題でありながら、今日も未解決のものが少なくない。その意味で、多くの神秘を蔵する分野であるが、他方、そこで展開される類体論のような、世にも美しい理論がある』」(p.245)「岩澤健吉『代数体と、有限体上の一変数関数体は、どこまでも似ていると信じてよい』」(p.246)「志村五郎は『整数論いたる所ゼータ関数あり』と述べたが今その言葉に『ゼータ関数のある所 岩澤理論あり』と続けて考えたい」(p.261)『ゼータ関数のある所 肥田理論あり』ともいえる。

「フェルマーの最終定理」を理解したい人(参考 書籍紹介)

N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』
土井公二/三宅敏恒著『保型形式と整数論』
志村五郎著『Introduction to the theory of automorophic functions』
J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』
Knapp『Elliptic curves』
河田敬義著『数論I, II, III』
藤崎源二郎・森田康夫・山本芳彦著『数論への出発』
上野健爾著『代数幾何学入門』
肥田晴三著『Elementary theory of L-functions and Eisenstein series』
清水英夫著『保型関数I, II, III』
吉田敬之著『保型形式論: ─現代整数論講義』
砂田利一著『基本群とラプラシアン、幾何学における数論的方法』

原論文の
 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 
 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras
//////
論文集 (志村五郎)
Collected Papers. I: 1954-1965 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95406-6.
Collected Papers. II: 1967-1977 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95416-5.
Collected Papers. III: 1978-1988 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95417-2.
Collected Papers. IV: 1989-2001 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95418-9.
など


//////
やや専門的内容
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/689.html

https://www.ms.u-tokyo.ac.jp/~abenori/conf/20150817.html

http://www.sci.kumamoto-u.ac.jp/~narita/ss2011_proceedings.pdf

http://ntw.sci.u-toyama.ac.jp/ss2017/

http://www.ist.aichi-pu.ac.jp/~tasaka/ss2018/index.html

https://core.ac.uk/download/pdf/42026066.pdf

ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。 
(世間では「谷山志村予想」だが、専門家の間では、「志村予想」である。)

https://www.math.kyoto-u.ac.jp/~tetsushi/nt_seminar.html
////// 
//////



https://www.youtube.com/watch?v=KjvFdzhn7Dc&list=PL6PDU-7OA2gdvu3jhxo1QABgR9SGeCkCb


 

///// 

参考
2013 1010頃
数学者が読んでいる本ってどんな本 小谷元子(編集) 東京書籍 森重文 (著), 上野健爾 (著), 足立恒雄 (著),砂田利一 (著), 黒川信重 (著),小谷元子 (著, 編集), 益川敏英 (著), 野崎昭弘 (著), & 5 その他 など
///// 

数学の超難問・ABC予想を「証明」 日本人

数学の超難問・ABC予想を「証明」 日本人
数学 超難問

数学の超難問・ABC予想を「証明」 望月京大教授

 長年にわたって世界中の研究者を悩ませてきた数学の超難問「ABC予想」を証明したとする論文が、国際的な数学の専門誌に掲載される見通しになった。

 執筆者は、京都大数理解析研究所の望月新一教授(48)。今世紀の数学史上、最大級の業績とされ、論文が掲載されることで、その内容の正しさが正式に認められることになる。

 望月さんは2012年8月、論文を自身のホームページ上で公開。数理研が発行する数学誌「PRIMS」が、外部の複数の数学者に依頼し、間違いがないか確かめる「査読」を続けてきた。同誌は研究者の間で一流の国際数学誌と評価されており、早ければ来年1月にも掲載が決まる。

 数学の難問の証明としては、「フェルマーの最終定理」(1995年解決)や「ポアンカレ予想」(2006年解決)などと並ぶ快挙。数学のノーベル賞といわれる「フィールズ賞」が与えられた過去の業績に匹敵するという。

 ABC予想は、整数の性質を研究する「整数論」の難問で、85年に提示された。整数aと整数bの和がcのときに成立する特別な関係を示す。

/////
/////
「ABC予想」望月教授、その経歴に驚きの声 16歳で大学進学、23歳で博士号!一方、公式サイトはまさかの...

京都大学数理解析研究所教授を務める望月新一氏が数学界の難問「ABC予想」の証明を行ったとされる論文が、国際的な数学の専門誌である「Publications of the Research Institute for Mathematical Science」(PRIMS・京都大学数理解析研究所刊行)に掲載される見通しであることを、朝日新聞が2017年12月16日に報じた。これまで査読を続けてきたが、早ければ18年1月にも掲載が決まるとしている。

数学界の難問の証明とあって、称賛の声が多く上がっているのはもちろん、望月氏の「圧倒的な」経歴などについても注目が集まっている。

19歳で大学を卒業、32歳で教授に
望月氏は12年8月に自身のウェブサイトで、「ABC予想」を証明したとする論文を公開。「ABC予想」は、整数に関する数学的予想の一つで、長く数学界に屹立する難問とされてきており、当初、望月氏の「ABC予想」の証明を行った論文を読み解ける数学者は数少なかったとされる。そんな中でも査読が続けられ、今回ようやく「PRIMS」に掲載予定であることが報じられた。

望月氏は1969年生まれの48歳。東京都に生まれたが、16歳で米・プリンストン大学に入学後、19歳で数学科を卒業。同年にプリンストン大学大学院の数学科博士課程に入学し、23歳で博士号を取得した。

同年に京都大学数理解析研究所の助手に就任。27歳で助教授となり、32歳で教授に就任し、現在に至る。1997年には日本数学会賞秋季賞を受賞、2005年には第1回日本学術振興会賞と日本学士院学術奨励賞を受賞するなど、研究功績も高く評価されている。

望月氏に関する報道を受けてネット上では

「『日本の誇る』という形容詞が伊達にならない人物の一人」
「証明のための全く新しい理論が難しすぎて望月新一教授に理解できる人がそもそも世界にまともにいないって話だったよね。論文として受理してもらえる程度に理解と検証が進んだのか」
「望月新一氏のABC予想、ついに論文掲載か。こっそり、何年も前から追ってた自分としてはうれしい限り。整数論はぶっちゃけ興味あんまり、ないけど、同じ数学をやる人間としては興味が尽きない」
と、手放しの称賛を寄せる人が多くいる。

「19歳で大学に入学した僕は一体...」
ほかにも、経歴に目をつけて、

「望月新一京大教授の経歴が凄すぎる‥‥ 16歳でプリンストン大学入学 19歳で学士過程終了 23歳で博士 宇宙際タイヒミューラー理論って何だww」
「京大の望月新一とかいう教授、19歳でプリンストン大学卒業するとか何者だよ 19歳で大学に入学した僕は一体...」
と、飛び抜けた経歴に舌を巻く人も多く見られる。また、

「望月教授の最新情報ページに飛ぶと 「望月新一の安否確認情報」 って書いてあって草」
「意外とお茶目な人なのかもしれないと思った >望月新一の安否確認情報」
といった声も。時代を感じさせるデザインとなっている望月氏のサイトでは、「最新情報」から望月氏の「安否確認情報」を見ることが出来る。17年12月12日の6時現在、健在であることを記している。

/////

望月氏のABC予想「証明」、独創的すぎて数学者も苦闘

 数学の超難問「ABC予想」が、日本人によって証明される見通しになった。

 数学史に残る偉業だ。論文筆者である京都大数理解析研究所の望月新一教授(48)は、自身のホームページ(HP)以外での社会に向けた発信は限られ、それが一層関心を集めてきた。

 数理研は米プリンストン高等研究所などと並び称される世界屈指の数学の研究機関。数学のノーベル賞と称されるフィールズ賞を受けた広中平祐氏や森重文氏ら著名な数学者が所長を務めた。

 望月さんは東京出身。父の仕事の関係で幼少期に渡米、名門・米プリンストン大大学院で博士号を取得したのを機に帰国した。2012年に今回の論文を発表すると、ニュースは世界を駆け巡り、英科学誌ネイチャーは「(証明が)真実なら驚くべき成果」などと報じた。従来の数学の解き方と異なる独自の理論に基づく論文は500ページを超え、その後の修正で現在は600ページに。その分量、学術誌に掲載される前に自身のHPで論文を出す珍しさでも注目された。独創性ゆえ当初は論文を理解できる数学者がほとんどおらず、勉強会が開かれるなど異例の経緯をたどった。メディアの関心も高かったが、望月さんは取材を受けてこなかった。

///// 
参考
2012年09月19日


2012年09月19日


2012年09月19日

///// 

2017年12月21日

望月教授による証明が数学界を二分

数学の難問「ABC予想(オステルレ・マッサー予想)」を証明したとする、京都大学の望月新一教授による論文について、世界の数学者らは様々な形で受け止めている。理解できる人が世界で20人ほどの500頁にわたる望月氏の著名な論文を、望月氏本人が率いる科学雑誌が掲載に向け受理したのだ。


査読雑誌に科学論文が掲載されるということは、関係分野の有能な専門家らがその論文を終わりまで読み評価したことを意味する。つまり必要な水準の査読のもと、その過程で誤りや捏造の確率は最小限にまで低められるのだ。京大の数理解析研究所が発行する数学誌面で、ABC予想を証明する望月氏の論文が2018年初めに掲載される見通しになっている。この論文は既に2012年に完成していたもので、その長さは500頁にわたる。この掲載については朝日新聞が報じている。ところが、この論文の掲載は望月氏の大勢の同僚にとって、査読者らが同論文を最後まで読み承認したということを意味することにはならない。ABC予想の証明に際しての問題は、論文の執筆者以外では誰もその証明を理解できないという点である。掲載に向け論文を受理した雑誌の編集長が、望月氏自身であるという事実も疑念を呼んでいる。
「ABC予想」は1980年代に提示され、現代整数論の未解決問題として長い間残ったままだった。この予想を証明するため、望月氏は新たな数学的手段「p 進数タイヒミューラー理論(p-adic Teichmüller theory)」を構築した。ABC予想について、この理論に基づいて組み立てられた証明を評価するために、英オックスフォードと京都で2回にわたって国際会議が開かれた。現在、この証明について討論できる能力のある人の数は20人とみられている。しかし、これら「身を捧げた人々」の中に、望月氏の論文をより広い範囲の研究者らに説明できる人が一人もいないことがわかったため、学会は依然として懐疑的な態度を崩していない。

今回のニュースについてニュージーランド・カンタベリー大学の数学者、フェリペ・ヴォロシュ氏は、「掲載に向け(論文が)受理されたという事実は、私にとっては何かを変えるものではない。依然として私は、理解できる形での説明を待っている状態だ」とコメントしている。


一方、ヴォロシュ氏と違う意見を持っているのが、英ノッティンガム大学の数学者、イヴァン・フェセンコ氏だ。フェセンコ氏は、望月氏による証明を完全に理解し、証明に誤りを発見していない数少ない研究者の一人だ。フェセンコ氏は、論文は既に検証されており、日本の雑誌に掲載されるという事実は、関係する分野をリードする専門家らが日本出身であるということで説明できると主張している。この雑誌は論文そのものについて、画期的な業績であり、過去半世紀にわたる整数論の歴史の中で最高の成果であると評価している。しかし、数学界の多数派がフェセンコ氏に同意するためには、望月氏による証明の内容を把握できるだけでなく、それを他の人に説明できる人が現れる必要がある。
望月氏は、ロシアの数学者であるグリゴリー・ペレルマン氏と比較される。ペレルマン氏は、「ミレニアム問題」の一つ、「ポアンカレ予想」を証明したことで知られる。2006年には「フィールズ賞」、10年には米クレイ数学研究所からミレニアム問題の一つを解決した業績に対し賞が授与されることが決まったが、ペレルマン氏はこれらの受賞を辞退した。その後ペレルマン氏は研究活動を中止し、メディアによる取材を拒否している。

望月氏は1969年東京生まれ。16歳で米プリンストン大学数学科に入学し、1994年に日本に帰国した。同僚らは、望月氏が数学の問題を解く際高い集中力を発揮すること、米国文化を嫌っていること、日本を去る気がないことを指摘している。

////// 
「望月新一教授の理論」を学習するための基礎書籍
以下

(個人的に、「平成30年間」に影響を受けた書籍(一部分))

平成30年の「120冊」  個人的セレクト 数学書(数理科学関係 編)

平成30年間の31冊  個人的セレクト 数学書(数理科学関係 編) 洋書(英語版)

「令和」に伝えたい数学書籍  選  平成30年間の和書・書籍「120冊」(日本語)と洋書・書籍「31冊」(英語版)

 
/////

加藤文元
「ABC予想と新しい数学」

abc Conjecture - Numberphile


Popular Conjecture & Mathematical proof videos 1〜43

//////


https://www.youtube.com/watch?v=KjvFdzhn7Dc&list=PL6PDU-7OA2gdvu3jhxo1QABgR9SGeCkCb



/////
///// 

参考

感動!「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

数学 「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

京都 VSOPも感動! (谷山・志村予想 がカギ)350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 

京都 VSOPも感動!「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) 
////// 



////// 
2019年11月23日
未来からやってきた数学理論「宇宙際タイヒミュラー理論」とは何か

 宇宙際タイヒミュラー理論(Inter-Universal Teichmüller Theory: IUT理論)とは、京都大学の望月新一教授が整数論の非常に難しい予想問題である「ABC予想」に関連して発表した理論で、一般的な数学のパラダイムの枠内では語れない、あまりにも斬新なものであるがゆえに、2012年における600ページを超える論文の発表以来、いまだに数学界の専門家集団をもってしてもその真偽を判断できておらず、正式なジャーナルにもアクセプトされていない、すなわち公式に認められていない理論だとされている。加藤(2019)は、このIUT理論をできるだけわかりやすく一般読者に解説しようと試みているが、この理論が数学界に受け入れられるまでには10年~30年かかるだろうと予想している。


加藤によれば、望月教授のIUT理論は、「斬新で深遠な発想によって、数学の世界に革命を起こそうとしている」「おそらく数学史上も匹敵するものを見出すことが難しいほどの、巨大な影響力をもつイノベーションを起こそうとしている」「従来の数学が相手にすることができなかった、数学の根本的なところにある問題に、新しい光を与えようとし、・・・凄まじい影響力と破壊力を持っている」ものでありながら、実はそれが、誰もが知っている「たし算」と「かけ算」という根本的な概念の絡み合いを捉えなおすというものであり、かつ、数学の専門家でさえ理解できない、というものなのである。まさに、誰も理解できない「未来からやってきた新しい数学」といえるのだが、そんな凄い数学の理論とはいったいどんなものなのだろうか。以下では、そのようなIUT理論の概要について、無謀な試みではあるが加藤による分かりやすい説明をさらに要約することで雰囲気のみをなんとなく理解してみたいと思う。


まずは、IUT理論の特徴の1つである「たし算」と「かけ算」を分離するとはどういうことなのかについて見ていこう。一見何をいっているのかわからないこの特徴についての加藤の解説によれば、ABC予想に代表される整数論において、素数が絡むような「小学生でも理解できるがトップクラスの数学者でも解けないとてつもなく難しい問題」の多くが、「たし算」と「かけ算」が複雑に絡み合っていることを特徴としている。そもそも数においては、それが固有に持っているたし算的な性質とかけ算的な性質が分かち難く結びついてしまっており、その結びつきの強さがかえって、ABC予想という問題を難しくしているのだというのである。


実際、加藤によれば、自然数という数学でもっとも基本的な対象における「たし算とかけ算の関係」というのは、複雑すぎてよくわからない。ある意味、整数論の難しさや深さのすべてが、この「たし算とかけ算の関係」に由来しているといってしまっても過言でないという。人類は「たし算とかけ算の絡み合い」によって生じている多くの問題をまだ解くことができない、人類の中で誰も完全には理解していないとさえいう。したがって、IUT理論では、ABC予想のような、簡単そうな見かけにも関わらず非常に難しく、数学的にもとても深遠な問題を解くために、「たし算とかけ算の絡み合い」を解いて、その間の関係を明らかにすることで、数の世界の深奥の秘密の一端を明らかにし、素数などの自然数に関する深い問題の数多くを解決するためのもっとも基本的な本質的な道筋を示そうということなのである。


では、IUT理論は、たし算とかけ算の関係に対してどのようにアプローチしようとしているのか。このアプローチの方法が、これまでの数学とはまったく異なる、それゆえに(本人以外)まだ誰も完全に理解できていないと思われるIUT理論の特徴を示しているといえる。それを示すのが、宇宙際タイヒミュラー理論の「宇宙際(inter-universe)」という言葉である。数学の宇宙あるいは舞台とは、そこであらゆる活動や思考を行う舞台であり、我々が数学をする上での「数学の一式」とでもいえる。別の言い方をすれば、我々にとっての数学のすべてである。


我々にとって、数学とはいつでも1つの学問であった。つまり、数学の宇宙は1つであった。1つの「数学」という学問としての統一体であったわけである。であるから、数学の研究をする場合も、その1つの数学の宇宙の中で作業をしてきたわけで、そのこと自体を特に意識することもなかった。しかし、IUT理論は、この「数学一式」を複数考えて、それら「舞台」あるいは「宇宙」の間の関係について論じるという、今までの数学の歴史にはなかった、まったく新しいやり方を提案する。複数の数学の舞台(宇宙)を想定することで、たし算とかけ算を別々に扱っても矛盾が起こらないような状況を実現しようとする。1つの舞台(宇宙)で数学をすると、たし算とかけ算を別々に扱うことができない。お互いが分かち難く結びついていて、しかも複雑に絡まりあっている。であるから、それを安直に分離しようとすると、たちまち矛盾が生じてしまう。よって、IUT理論では、そのような矛盾が起こるのを回避するために、複数の舞台(複数の数学の宇宙)で作業するのである。


では、IUT理論では異なる数学の宇宙の関係をどのように理解しようとするのか。異なる数学の宇宙もしくは舞台をつなぐのが、数学の群論を用いた「対称性通信」であると加藤は解説する。IUT理論では、対称性を伝達することで、異なる宇宙(舞台)間の通信を成立させ、それらの間の関係性を構築しようとするのだという。その際、ある数学の宇宙が、別の数学の宇宙から受信した対称性から対象を復元しようとする際に生じる復元の不定性を定量的に計測し、これを実現したい不等式の成立に用いる。そしてこのプロセスはABC予想の証明にもつながってくる。つまり、「伝達・復元・ひずみ」が、宇宙間通信の特徴だと加藤は指摘する。


以上をまとめると、IUT理論は、従来の数学と抜本的に異なる史上初の試みを提案し、それまでの数学の常識を超えた、新しい柔軟性を実現しようとしている。すなわち、たし算とかけ算が絡み合っているがゆえに解けない様々な問題について、「たし算とかけ算を分離して、互いに独立のものとして、別々に扱う」ことで新たな柔軟性を作り出すというアプローチをとる。そのために、これまでにはなかった複数の宇宙を想定する。これは普通の数学には決してできないことを可能にすることを目指しているわけで、そういうことを可能にするための、人類の数学全般に対する一種の提案なのだと捉えることができると加藤は指摘する。これがIUT理論が数学に提案する、非常に重要な発想の転換であると加藤はいう。

////// 

数学の「賞」を考えるヒント?! こんなにいる!「ノーベル賞級」の日本人 (数学のノーベル賞「フィールズ賞」など)

数学の「賞」を考えるヒント?! こんなにいる!「ノーベル賞級」の日本人 (数学のノーベル賞「フィールズ賞」など)

こんなにいる!「ノーベル賞級」の日本人


2017年のノーベル賞は、文学賞に輝いた日本生まれのカズオ・イシグロ氏に注目が集まったものの、ファンが期待した村上春樹氏や自然科学系の日本人研究者は受賞に至らず、「日本人が4年連続」の栄誉はならなかった。だが、ノーベル賞以外にも国際的に権威がある賞はあまたあり、日本人は多くの賞に輝いている。読売新聞調査研究本部で科学を担当する佐藤良明主任研究員が、ノーベル賞級の業績を挙げている日本人を紹介し、日本の隠れた実力をリポートする。

数学のノーベル賞「フィールズ賞」


 科学分野で最初に挙げたいのは「フィールズ賞」だ。ノーベル賞が対象とする科学の分野は、物理学、化学、生理学・医学の3分野だけで、数学賞がないため、長くフィールズ賞は「数学界のノーベル賞」と言われていた。


 カナダの数学者フィールズの提唱で1936年に創設された同賞を、日本人はこれまでに3人が受賞している。そのうち、世間一般に名前が広く浸透している数学者といえば、広中平祐・元山口大学学長(70年受賞)だろう。他の受賞者である故・小平邦彦博士(54年受賞)と森重文博士(90年受賞)も数学界ではビッグネームだが、ノーベル賞受賞者ほど知られてはいないのは残念だ。

 世界各国の高名な数学者の集まりである国際数学者会議が授与するフィールズ賞はある意味、ノーベル賞よりも狭き門かもしれない。というのも、賞の授与が行われるのが同会議の開催周期に合わせた「4年に一度」に限られているからだ。しかも若手を顕彰するという意味で、賞の対象者を原則「40歳以下」にするという年齢制限までついている。

 ノーベル賞が毎年の授与で、しかも年齢制限がないことを考えると、賞の重みがまた違ったものに感じられる。実際、素粒子研究で2008年のノーベル物理学賞を受賞した益川敏英・京都産業大学教授は、「日本人にはノーベル賞に比べ、フィールズ賞があまり知られていない。受賞者はもっと評価されていいのではないか」と語っている。

前述のようにノーベル賞の自然科学系が3部門しかないことから、分野の違う科学者はノーベル賞と縁がない。このためお膝元であるスウェーデンには、ノーベル賞を補完する意味合いの賞がある。1982年から毎年、受賞者を選んでいる「クラフォード賞」だ。


 賞の選考は、ノーベル物理学賞と化学賞を選ぶスウェーデン王立科学アカデミーが責任を負い、「天文学・数学」「地球科学」「生物科学」(環境、進化など)の3分野から順番に受賞者を選出している。ほかに、賞の財源を出資してくれた資産家が関節炎に苦しんでいたことから、関節炎の研究で画期的な進歩があった場合には賞の対象になる。

 日本人では2009年に、元大阪大学総長の岸本忠三博士、平野俊夫博士がともに関節リウマチの新たな治療薬開発の業績で、15年には国立遺伝学研究所の太田朋子博士が進化生物学の新しい理論の提唱で受賞している。17年には坂口志文しもん・大阪大学特任教授が特殊な免疫細胞「制御性T細胞」を発見した業績で受賞に輝いた。


 一方、同じスウェーデンで「森のノーべル賞」と呼ばれる「マルクス・バーレンベリ賞」を15年に受賞したのは、磯貝明・東京大学農学部教授ら師弟3人だ。セルロースナノファイバーという木質の特殊繊維を開発した業績が評価されての受賞だった。

 森林科学や木材科学の基礎研究を対象にした同賞は、民間財団の賞であるものの、賞金が3000万円にのぼり、式典にはスウェーデン国王が出席するなど、「もてなし」ぶりからしてノーベル賞に引けを取らない。ノーベル賞がカバーしきれない学問分野の優れた研究成果に光を当て、ノーベル賞を補完していると言っても過言ではあるまい。

それぞれの国・地域にある“ノーベル賞”

 世界を見渡せば「○○のノーベル賞」は様々ある。「東洋のノーベル賞」「台湾のノーベル賞」を目指すとされるのが、2014年に台湾の実業家が創設した「唐奨」だ。持続可能な開発、バイオ医薬科学、中国学、法による支配の4部門があり、第1回(14年)のバイオ医薬科学部門の受賞者には、本庶ほんじょ佑たすく・先端医療振興財団理事長が米国人科学者とともに選出されている。本庶氏はがん免疫治療の新薬を開発し、がん治療に新しい道を開いた。賞金は約1億8000万円とビッグで、本家ノーベル賞の約1億2500万円よりも高額だ。

2017年のブレイクスルー賞の「生命科学賞」に決まった森和俊・京都大教授
2017年のブレイクスルー賞の「生命科学賞」に決まった森和俊・京都大教授
 台湾の「唐奨」の賞金をも上回り、金額で突出しているのが、グーグルの創業関係者ら米露の資産家らによって創設された「ブレイクスルー賞」だ。賞金は約3億4000万円。12年に「基礎物理学賞」の顕彰からスタートした同賞は、今や「生命科学」「数学」も合わせた計3部門を有し、英科学誌ネイチャーからは「21世紀のノーベル賞」、科学者の間では「シリコンバレーのノーベル賞」などと評されている。この賞を受賞した科学者が後にノーベル賞を受賞することが多いことから、「本家ノーベル賞の前哨戦」とも言われている。


 17年の生命科学賞には、細胞内小器官の研究で知られる森和俊・京都大学教授らが決まった。森氏は国際的な科学賞をいくつも受賞し、ノーベル賞の有力な候補者だ。

 16年にノーベル生理学・医学賞に輝いた大隅良典・東京工業大学栄誉教授は、ノーベル賞決定前にブレイクスルー賞内定の連絡を受けていた。大隅氏は16年12月、ノーベル賞の授賞式に向けて日本を出国したが、まず米国シリコンバレーを訪ねてブレイクスルー賞の授賞式に出席し、その後にスウェーデンに移動した。まさに両賞の“近接ぶり”がうかがえるエピソードだ。大隅氏は17年、学生を支援する奨学金と基礎研究に助成する財団を設立したが、その資金は、ノーベル賞とともにブレイクスルー賞の賞金が原資となったという。


2016年のブレイクスルー賞授賞式で、喜びを語る大隅良典・東京工業大学栄誉教授
 日本にも、国際的な評価を得ている賞がある。

 「日本版ノーベル賞」を目指し、パナソニックの創始者である故・松下幸之助氏の発案で1985年に誕生した「日本国際賞」だ。「物理・化学・情報・工学」と「生命・農学・医学」の2領域に分かれ、賞金は各5000万円。既にノーベル物理学賞を受賞していた江崎玲於奈・横浜薬科大学学長に贈った事例(1998年)もあるが、例年の傾向をみると、いわゆる「ノーベル賞の候補者」として下馬評にのぼる科学者が選ばれることが多い。

 実際、2007年春には巨大磁気抵抗の研究でドイツ人のペーター・グリュンベルグ博士が日本国際賞を受賞し、同じ年の12月にノーベル物理学賞を受賞した例もある。近年では鉄系超電導の研究で名高い細野秀雄・東京工業大学教授や、コレステロールを下げる物質を発見した遠藤章・東京農工大学特別栄誉教授らが同賞の栄誉に輝いている。

 科学分野からは離れるが、「アジアのノーベル賞」として有名なのが、フィリピンの非営利組織が運営する「マグサイサイ賞」だ。報道・芸術表現から国際理解・平和活動、社会奉仕まで様々な対象分野があり、日本からは映画監督の黒沢明氏や水俣病を告発してきた作家の石牟礼道子氏、パキスタン、アフガニスタンの医療支援・インフラ整備に尽力する中村哲医師など、各界から多数の受賞者が出ている。17年は、アンコールワット遺跡の修復保存活動に尽くした石澤良昭・元上智大学学長に賞が贈られた。

出てこい「二冠」科学者

厳粛な雰囲気に包まれるノーベル賞の授賞式

 こうして見ると、日本人は大いに活躍していることがわかる。


 資源の乏しい日本は以前から科学技術立国を大目標に掲げ、「科学の一流国になる」のはある意味、悲願でもある。ノーベル賞の受賞者数がその国の科学技術力を計る指標の一つであることは論をまたないが、それだけではない。一般市民に科学になじみを持ってもらえるよう、ユーモア精神を忘れないのも、科学者の大切な資質と言える。

 この視点によると、「人を笑わせ、そして考えさせてくれる研究」を顕彰する賞で、パロディー・ノーベル賞とも言われる「イグ・ノーベル賞」の意義も大きい。17年も北海道大学や慶応大学の研究者が、メスなのに「男性器」を持つ昆虫を発見した業績で生物学賞を受賞した。

 これで日本人の受賞は11年連続になり、世界に誇るべき堂々たる成果だといえよう。その中には、中垣俊之・公立はこだて未来大学教授のように微生物の粘菌を使った別々の研究で2度受賞に輝いた「つわもの」もいる。ならば今後は、「本家」と「イグ」をダブル受賞する日本人科学者に登場してほしいものだ。

 ノーベル賞とイグ・ノーベル賞の両方に輝く研究者……。「そんな人いるの?」と思うかもしれないが、実は過去に1人だけいる。


ユーモアたっぷりに行われる「イグ・ノーベル賞」の授賞式

 2000年に「カエルの磁気浮上」という研究でイグ・ノーベル賞を受賞したロシア生まれのオランダ人科学者アンドレ・ガイム博士(英マンチェスター大教授)は、10年に「炭素新素材グラフェン」の研究でノーベル物理学賞を受賞している。

 余談だが、ガイム博士のノーベル賞の受賞業績「グラフェン」は、日本と少しばかり因縁がある。「炭素新素材グラフェン」は、飯島澄男・名城大学終身教授が1991年に発見した筒状の炭素素材カーボンナノチューブ(CNT)と同じ研究領域になる。炭素新素材といえば、球状の「フラーレン」発見者が96年にノーベル化学賞を受賞しており、飯島博士のCNTもノーベル賞の期待があった。しかし、ふたを開けてみると、飯島博士の発見よりも後に研究成果を発表したガイム博士の方がノーベル賞に決まった。当時の日本では、「先を越された」という受け止め方もあった。

 いずれにしても、炭素新素材をめぐるノーベル賞レースで日本発CNTの先を行き、おまけに、イグ・ノーベル賞まで受賞しているスーパー・サイエンティストは、日本人がまだ到達しえない高みにいることは確かだ。

 「科学を楽しむ余裕のある社会であってほしい」。大隅良典・東京工業大学栄誉教授は、今でもそう言い続ける。賞は違えど「イグ」受賞者もまた、同じ思いを抱いている。14年に「バナナの皮が滑る理由を科学的に解明した業績」でイグ・ノーベル物理学賞を受賞した馬渕清資・北里大学教授(現名誉教授)は、同大学の広報誌で次のような心情を吐露している。「受賞が、多くの人に笑顔を届け、科学の面白さを伝えるきっかけになったらうれしい」。これまでの「イグ」受賞実績と、近年のノーベル賞受賞者の増加を考え合わせれば、日本から「第二のガイム博士」が出ても不思議ではない。「その日」が来るのを楽しみに待ちたい。


//////
森重文(京都大学教授) 平成2年(1990年)フィールズ賞受賞、平成2年文化功労者

1990 08 21

祝! フィールズ賞を受賞 森重文 京都大学数理解析研究所教授 「3次元の代数多様体の極小モデル証明」


(大学4年生の頃の「学問的空気」、見聞を広める「就活」に、「院試」に、「先輩」に・・・いろいろ忙しい。)

 森 重文(もり しげふみ、1951年(昭和26年) 2月23日 - )は、日本の数学者。理学博士(京都大学、1978年)、京都大学名誉教授。専門は代数幾何学における双有理幾何学。代数幾何学での業績により1990年にフィールズ賞を受賞。
名古屋大学教授、京都大学数理解析研究所教授、所長、名古屋大学特別教授、京都大学高等研究院特別教授、所長を歴任。ハーバード大学、プリンストン高等研究所、マックス・プランク研究所、コロンビア大学など、海外での研究経験も豊富であった。数学分野での国際的な協力を行う非政府組織であり、国際数学者会議の主催団体である国際数学連合の総裁にアジア人としては初めて選出された。愛知県名古屋市出身。

業績
「接束が豊富なら射影空間である」というハーツホーンの予想を解決した論文は、代数多様体の構造論における最初の一般的な定理として歴史に刻まれるものであり、そこで開発された証明の技法がさらに洗練され「端射線の理論」となった。これは代数多様体および有理写像の構造の研究に有力な手段を与えるもので、これにより2次元の壁を乗り越えて高次元代数多様体の構造を解明することが可能になった。森理論の発表、3次元Fano多様体の研究など高次元代数多様体の研究に新しい視点を提供した。これらの業績により、1983年のワルシャワでのICMの招待講演に招聘された。さらに極小モデルの存在を3次元の場合に示すことに成功し、1990年に京都で開かれた国際数学者会議でフィールズ賞を受けた。


/////
逸話

「数学のたのしみ」で、森重文氏 の回想録が出ていた。中・高校時代から大学卒業後までの森氏の数学とのかか わりが語られていて、そこには恐るべきことが極めてさりげなく書かれている。 例えば、大学3回生ぐらいの頃、森氏は当時京大の助教授をされていた土井公二先生のところに入りびたり、「代数をやりたい」と申し出た。で、土井公二先生は、 将来代数をやるにはこの本を読めと、色々紹介されたという。そこまではいい。 しかし、それからが恐ろしい。1~2ヵ月後読み終わりましたと土井公二先生を訪ね ると、また別の本を紹介される。そういう事が何回か繰り返された。結局それ は将来代数幾何をやるにも数論をやるにもどちらにも必要な内容だったという。 どういう本なのか土井公二先生に聞いたことがある。「数学者アンドレ・ヴェイユ(1906~1998)が書いた「Basic Number Theorem」や主著に三部作『代数幾何学の基礎』(1946 )、『アーベル多様体と代数曲線』(1948)、『代数曲線とそれに関連する多様体』(1948 )など、らしい。数学の専門書を1~2ヵ月で読破するのはマトモではない!(定期試験のやっつけ勉強とは訳が違う。)回想録にも登場する某先生が他の所で書いていたが、学生時代の森氏に対しては「数学書を読むのが 異常に速いという印象を持った」そうである。この回想録には、他にも恐ろしい話が随所に見られるが詳細は省略する。

森重文氏「私の受験の頃は東大紛争で東大入試が無かった。京大教養部も封鎖。京大の入学式もは、全共闘の連中が突入してきて1分で終わった。同年十月に教養部授業の再開した。そのような時期であった」
//
森重文氏「2回生後期からは、土井公二先生の代数学の講義。朝行くとまず土井先生の研究室に行く。先生との日常的なやり取りの中で、代数、幾何、数学の事が少しずつわかるようになってきた。この頃丸山正樹先生にも出会った」
//
森重文氏「助手時代、土井先生にSeveriの問題を教えてもらい、それを解決して博士論文を作成。当時はこのようなキャリアが許された。ある意味鷹揚だった。その後、ハーツホーン予想を隅広先生と共同研究。アナログとデジタルが融合できたという印象」
//
Q「代数幾何を専攻すると決めた理由、例えば解析などに心が揺れなかったのか」森重文氏「整数論と代数学かで悩んだ。土井先生は整数論の先生。『代数幾何の基礎』という本を進められ、二回生くらいで読み終え、先生のところに行くと次の本、また次の本と読み進めた」
//


1969年に東京大学の入試が中止されたため、京都大学に進んだ。このためフィールズ賞受賞時は「あのとき東大に進んでいたらフィールズ賞受賞はなかっただろう」と『科学朝日』で報じられた。
//
学生時代、指導教授からある数学書を薦められると1~2ヶ月ほどで「読みました」と戻って来てしまい、次の数学書を薦められてはまた同じことを繰り返した。「数学書を読むのが異常に速い」学生として強烈な印象を与えていたという。
//


大学時代は全問正解しても80点しかくれない教授の試験で120点を取り続けた。
『大学への数学』という受験雑誌の学力コンテストで1年間ほぼ連続満点を続けた伝説の人となり、編集部が森君の答案を楽しみにしていた。
東京大学物性研究所教授の高田康民は、京大では数学志望だったが、同級生の森重文と比べて自分の数学的才能に自信を持てなくなり、翌年東大に入学し直し、物理学志望に変更した。
高校の時に大学の内容を進んで学んでいたりはしていなかった。大学での数学に触れたのは大学に入ってからである。
広中平祐は「自分は鈍才だが、森君は天才」という。
謙虚な人柄で、「3次元代数多様体における極小モデルの存在証明」のテーマで同賞を受賞したことについて「応用がものすごく広がったが、私が貢献したのはごく一部。周りの皆さんのおかげ」という。

学生時代、指導教授からある数学書を薦められると1~2ヶ月ほどで「読みました」と戻って来てしまい、次の数学書を薦められてはまた同じことを繰り返した。「数学書を読むのが異常に速い」学生として強烈な印象を与えていたという。
教えていた数学の教師が、高校卒業後も『彼はやがてノーベル賞をとる』と言い続けていた。
フィールズ賞受賞の4年前に他の分野で既にフィールズ賞候補になっていてその時は取れなかったが、競争相手が多いメジャーな別の分野を新たに研究して、フィールズ賞を受賞した。
天才伝説については、まだ京大の助手の頃から既に轟き渡っていて、学生は「森先生は今は『重文(重要文化財)』だけど、いつか国宝になるんだろうな。『森重文』改め『森国宝』!なーんてね」みたいな冗談を言い合っていた。

日本の数学者
【今日の数学者】2月23日はガウスの命日であり、志村-谷山予想の志村五郎先生のお誕生日であり、フィールズ・メダリストの森重文先生のお誕生日です。

//////

生誕 1951年2月23日
日本の旗 日本、愛知県名古屋市
国籍 日本の旗 日本
研究分野 数学
研究機関 京都大学
名古屋大学
出身校 東海中学校・高等学校
京都大学
博士課程
指導教員 永田雅宜
主な業績 代数幾何学
影響を
受けた人物 広中平祐
主な受賞歴 フィールズ賞(1990年)
コール賞(1990年)

学位論文
森重文『The endomorphism rings of some abelian varieties』京都大学〈博士論文(乙第3526号)〉、1978年3月23日。日本語題名『幾つかのアーベル多様体の自己準同型環』
著書
森重文『双有理幾何学』岩波書店〈岩波講座現代数学の展開第16巻〉、1998年、ISBN 4000106538。
Janos Kollar、森重文『双有理幾何学』岩波書店、2008年、ISBN 9784000056137。


//////

略歴
1969年 - 東海高等学校卒業
1973年 - 京都大学理学部卒業
1975年
京都大学大学院理学研究科修士課程修了
京都大学理学部助手
1977年 - ハーバード大学助教授(1977-1980年)
1978年
京都大学より理学博士号
ハーツホーン予想を解決 (ハーバード大学滞在中)
1980年 - 名古屋大学理学部講師 ハーバード大学、プリンストン高等研究所、マックス・プランク研究所の研究員を併任
1982年
端斜線の理論を発表
名古屋大学理学部助教授
1985年 - コロンビア大学客員教授(1985-1987年)
1986年 - 3次元の代数多様体の極小モデルの存在証明に成功
1988年 - 名古屋大学理学部教授
1990年 - 京都大学数理解析研究所教授
1999年 - 国際数学連合副総裁(1999 - 2002年)
2010年 - 名古屋大学特別教授
2011年 - 京都大学数理解析研究所所長( - 2014年)
2015年 - 国際数学連合総裁( - 2018年12月)
2016年
京都大学高等研究院院長
京都大学名誉教授

//////
受賞・講演歴
1983年
日本数学会彌永賞 - 代数多様体の研究
ICM招待講演(ワルシャワ)
1984年 - 中日文化賞 - 代数幾何学の研究、とくにハーツホーン問題の解決
1988年
日本数学会秋季賞 - 代数多様体の極小モデル理論(川又雄二郎との共同受賞)
井上科学振興財団井上学術賞 - 高次元代数多様体の研究、特に3次元極小モデルの存在証明
1990年
ICM全体講演(京都)
国際数学者会議フィールズ賞
アメリカ数学会コール賞代数部門 - 代数多様体の分類。特に論文 Flip theorem and the existence of minimal models for 3-folds に対して
日本学士院学士院賞- 代数多様体の分類理論の研究(飯高茂、川又雄二郎との共同受賞)
文化功労者
1992年 - 米国芸術科学アカデミー外国人名誉会員
1998年 - 日本学士院会員
2004年 - 藤原科学財団藤原賞 - 高次元双有理幾何学理論の建設
2016年 - ロシア科学アカデミー外国人会員
2017年 - 米国科学アカデミー外国人会員
//////
参考

1990年8月21日 「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授


参考


京都 VSOP も祝! 1990年8月21日 「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授

//////

参考


<論文のマップあれば・・・>「3次元の代数多様体の極小モデル証明」 フィールズ賞を受賞 森重文 教授
//////

京都賞 受賞記念講演 黒澤 明(思想・芸術部門映画・演劇)、アンドレ・ヴェイユ(基礎科学部門 受賞(数学 整数論・代数幾何学など))国立京都国際会館へ (大学の研究室 教授らとも、京大の友人とも)ame


あの頃考えていたこと(学問編)メモvol.2  数学 整数論(志村理論)を知る 「数を読む」Jugem


あの頃考えていたこと(学問編)メモvol.1  数学 整数論(志村理論)を知る 「数を読む」 se


数学 整数論「素数の宇宙の世界」 Dream of G. Shimura? (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎 li


1993年6月23日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言 fc2


1994年9月19日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を修正 li


1995年2月13日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明(完成)se


感動!数学の歴史 「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) ame



////// 

数学(算数)・科学技術教育(STEM教育)とその「思考」 AI兵器  禁止へ国際世論高めたい

数学(算数)・科学技術教育(STEM教育)とその「思考」 AI兵器  禁止へ国際世論高めたい
bousai-app-dandou misairu 00


 火薬、核兵器に続く「戦争の第3革命」となる恐れを、宇宙物理学のスティーブン・ホーキング博士らが指摘し、警鐘を鳴らしている。

 AI(人工知能)兵器だ。正式には「自律型致死兵器システム(LAWS)」と呼ばれる。

 AIを搭載し、人間を介さないで自ら判断して、敵を殺害する。SF映画の世界が現実に近づいていることに、もっと目を向ける必要がある。

 先月、AI兵器の規制をめぐり、初の国連公式会議がスイス・ジュネーブで開かれた。100以上の国・地域の代表、専門家、NGO(非政府組織)が議論したが、参加国間の温度差が鮮明になった。

 途上国などは禁止条約の制定を求めたが、米国やロシアは慎重な姿勢だ。日本はAI兵器に否定的だが、規制による民生技術への影響を懸念している。

 AI兵器はまだ存在していない。開発は数十年先と言われるが、AI技術の進化は予測を超えている。科学者らが数年後には開発は可能という警告に耳を傾けたい。

 兵器開発前に、開発や使用の禁止措置を講じる「先制的アプローチ」を国際人権団体などが求めている。巨額投資が進めば、開発を止めるのは難しい。

 米国の原爆開発「マンハッタン計画」の経緯を見れば明らかだ。先の大戦で日本の敗戦が濃厚だったのに、完成したばかりの原爆を広島、長崎に投下したことを忘れるべきではない。

 AI兵器は自国兵士の犠牲をなくし、人の感情による判断ミスを避けられる。恐怖心がないので命令を正確に行使できると評価されている。

 しかし、兵士の犠牲が回避されることで、安易な開戦が頻発しかねない。国際法違反の責任を誰が負うのか不明確なため、人道に反する戦闘が相次ぎ、抑止できないことも考えられる。

 そもそもAIの判断で殺害されることに、人の倫理を超えた理不尽さがある。テロリストや独裁者が手にする危険も無視できない。

 AIのような自律型ではないが、すでにロボット兵器は米軍などが配備している。米国内で遠隔操作する無人機ドローンが、中東地域などで偵察、攻撃を繰り返し、市民を巻き込む惨事も起こしている。

 AI兵器の登場で、今以上に戦場の様相は変わるだろう。

 国際人権団体ヒューマン・ウオッチは、米国や中国など少なくとも6カ国に開発能力があると分析している。動向を注視する必要がある。

 開発への懸念がロボット学者らから示され、国際社会の中でで議論されるようになったのは10年ほど前からだ。国連は2013年から特定通常兵器使用禁止制限条約の締約国が非公式会合を重ねてきた。

 同条約は過度に、無差別に傷害を与える非人道的兵器を禁止・制限するもので、地雷や焼夷弾(しょういだん)、レーザー兵器が対象になった。多くの厳しい目が国連を動かしたからだ。

 AI兵器が出現してからでは遅い。規制に向けて国際世論を高めていく必要がある。

////// 
参考

AI兵器  禁止へ国際世論高めたい ( 数学(算数)の思考 と 科学技術教育(STEM教育))


数学・科学教育危機? 大学入学共通テスト、試行試験結果速報…数学IAで正答率0.9%の難問

「数学 算数」の興味を!  数字が織りなす美しく不思議な世界


////// 
ミサイル落下時の避難施設情報 00

//////
イオン 岡山 ファミリーで「命」を守れ! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) 万が一に備える! イオンモール岡山 (帰宅困難者一時滞在施設)  岡山市との協定による避難場所編


イオニスト は万が一に備える! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) イオンモール岡山 (帰宅困難者一時滞在施設)  岡山市との協定による避難場所編
////// 
Yahoo 防災アプリ(万が一のミサイルに備える) /弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)

アプリで「命」を守れ! Yahoo 防災アプリ(万が一のミサイルに備える) /弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)


//////
 
iPhone Android で命を守れ!、弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)

スマホの情報で「命」を守れ! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) スマホで情報 取得編



京都 は万が一に備える! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



京都 ファミリーで「命」を守れ! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) 万が一に備える!



弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) 「都道府県の地域」編



京都府 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)
 

////// 


////// 

数学・科学教育危機?大学入学共通テスト、試行試験結果速報…数学IAで正答率0.9%の難問

数学・科学教育危機? 大学入学共通テスト、試行試験結果速報…数学IAで正答率0.9%の難問


大学入試センターは平成29年12月4日、11月に行われた「大学入学共通テスト」の導入に向けた試行調査(プレテスト)の結果速報を公開した。記述式問題を除く、11月29日時点の正答率速報が公表されている。

 平成32年度(2020年度)から導入される、現行の大学入試センター試験(センター試験)の後継テストにあたる「大学入学共通テスト」。大学入試センターは平成29年11月、導入に向けた試行試験(プレテスト)を実施した。

 試行調査への参加率は、全高等学校・中等教育学校の38%にあたる1,889校。11月13日から24日の期間にかけて、任意の日時で調査した。国語と数学1(数学I・A)は高校2年生以上、数学2(数学II・B)、地理歴史、公民、理科は原則高校3年生以上が受検した。受験者合計17万8,129人のうち、11月27日時点でのマーク式問題答案の読取率は69.4%。大学入学共通テストの国語と数学に導入される予定の記述式問題も試行されたが、答案の読取と速報は12月4日現在、まだ公開されていない。

 11月29日時点の読取状況によると、なかには正答率0.9%と、1.0%を切る「難問」もあった。たとえば、2次関数の性質を活用して文化祭で販売するTシャツの価格を求め、利益が最大になるよう回答する「数学I・A」第2問(3)の正答率は3.0%だった。



「大学入学共通テスト」平成29年度試行調査(11月実施) 出題された問題の例 <数学I・A> 第2問(必答問題)
画像:正答率が3.0%だったのは(3)

 同じく「数学I・A」では正四面体における辺と線分の垂直条件について、それを証明するために用いる空間図形の性質を考察して回答する第4問(3)の正答率は3.1%。同問題は、該当する選択肢をすべて選択し回答する形式だった。該当する選択肢をすべて選択する問題は第5問(5)でも見られ、正答率は0.9%だった。

 このほか、「物理」では第3問AB・問5で2.5%、「化学」では第1問・問4で4.6%、「生物」では第5問B・問5で4.6%と、受検者の多くが回答できなかった問題があることがわかった。

 大学入試センターは、実際の問題構成や内容は今後、今回の試行調査の解答状況を分析しながら検討しているとしている。なお、今回の試行調査で出題された問題の構成や内容は、必ずしもそのまま平成32年度からの大学入学共通テストに受け継がれるものではない。平成30 年度は大学入学共通テストの試験会場となる大学を実施会場として、問題作成や採点方法、試験の実施運営などを含めた総合的な検証を行う予定。

//////

大学新テスト試行、問題2割増 素早くこなす力必要に 

 文部科学省は4日、大学入試センター試験に代わって2020年度に始まる「大学入学共通テスト」の試行調査(プレテスト)の問題と結果を公表した。複数の文章や図、グラフを読ませる問題が多く、4教科11科目で問題のページ数はセンター試験より2割増えた。共通テストは考える力に加え、情報を素早く処理する力も問われる試験になりそうだ。


都立桜修館中等教育学校で行われた「大学入学共通テスト」の試行調査(11月、東京都目黒区)
 試行調査は11月13~24日、全国約1900校でのべ18万人の高校生が受験した。共通テストでは国語と数学I・Aに記述式問題が導入され、マークシート式問題も思考力を問う内容に変わる。今回の調査もこれと同じ形式で、地理歴史・公民、理科を含む計11科目で実施。民間の検定・資格試験を活用する英語は行わなかった。

 各科目の問題のページ数を過去3年のセンター試験で最も多かった時と比べると、現代社会、物理、化学を除く8科目で7~100%増。11科目合計のページ数は363ページと18%増えた一方、問題数は計288問と8%少なく、1問あたりの情報量が増えた。

 数学I・Aは身近なテーマについて生徒が議論する場面などを多く設定し、ページ数が2倍になった。数学2・Bと合わせると8割増。

 国語では高校の生徒会で部活動について話し合う記述式の大問で生徒会規約、会話文、部活終了時刻のデータなど計5種類の文章を示した。古文は源氏物語の同じ一節でも、解釈の違いで表現が大きく異なる3種類の文章を読み比べさせた。

 作問や採点を担う大学入試センターは試行調査のうちマーク式問題の正答率(速報値)を公表した。正答率の範囲は0.9~87.1%で、過去のセンター試験と大差なかった。科目ごとの平均正答率は公表しない方針だが、センター試験に比べると低い科目が多かったようだ。記述式は今後採点し、全体の結果分析も含めて18年3月末までに公表する。

 センターは試行調査の問題構成について「思考力・判断力・表現力を問う新しい傾向の問題の割合をあえて多くした」と説明している。本番の問題作成に向け正答率などのデータを集めるとともに、求める学力像を明確に打ち出す狙いがある。

 今後は18年2月に英語のみの試行調査を実施。同11月に行う10万人規模の試行調査では知識・技能をシンプルに問うような問題を増やし、本番に近いバランスにするとしている。

 マーク式問題で正答率が低かったのは、ある事柄の概念や因果関係を問うような問題。日本史Bでは1950年代の経済成長に関し「神武景気」を「大型設備投資による景気拡大」と表現した選択肢を正解としたが、正答率は21%だった。

 異なる分野の知識を合わせた問題でも課題がみられた。物理ではブランコが揺れる周期を短くする方法について、ひもを短くする、重心を上げると異なる単元の知識を同じ小問で尋ねたが、正答率は21%だった。

 マーク式では、正答の数を示さず「正しいものを全て選べ」という新しい形式の問題を計14問出した。正答率は30%未満が12問、うち3問は10%未満だった。センターは結果を分析し、一部の選択肢のみ合っていた場合に部分点を出すかなども含めて検討する。

 共通テストは高校・大学教育と入試を一体で改革する国の「高大接続改革」の目玉。今後は記述式問題の採点体制、段階別評価も含む成績評価の方法、英語の民間試験の選定などについて検討を進める。19年度初めに詳細な実施大綱を策定し、21年1月に初回を実施する。英語の民間試験は20年4月から受けられる。

◇   ◇

大学入学共通テストの試行調査(プレテスト)の全科目の問題と正解(表示されない場合はパソコンからご覧ください)

/////


Yahoo 防災アプリ(万が一のミサイルに備える) /弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)

アプリで「命」を守れ! Yahoo 防災アプリ(万が一のミサイルに備える) /弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



iPhone Android で命を守れ!、弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



スマホの情報で「命」を守れ! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)




弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) スマホで情報 取得編



京都 は万が一に備える! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



京都 ファミリーで「命」を守れ! 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) 万が一に備える!



弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新) 「都道府県の地域」編



京都府 弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)



弾道ミサイルが落下する可能性がある場合にとるべき行動について(平成29年9月25日更新)
 
//////
ギャラリー
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
  • AI   予測 秋に第5波到来も!? 新型コロナ最新予測 (  「イギリスの変異株(N501Y)」(第4波)のあとは、インドの変異株「L452R」「インド株コロナウイルス」(第5波)か )
カテゴリー
  • ライブドアブログ